Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.175
Filtrar
1.
Mikrochim Acta ; 191(5): 239, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570399

RESUMO

To accurately detect tumor marker carbohydrate antigen 72-4 (CA72-4) of serum samples is of great significance for the early diagnosis of malignant tumors. In the present study, MnO2/hollow nanobox metal-organic framework (HNM)-AuPtPd nanocomposites were prepared via multi-step synthesis and superposition method and a series of characterizations were carried out. A highly sensitive immunosensor Ab/MnO2/HNM-AuPtPd/GCE based on the composite nanomaterial was further prepared and used to detect the tumor marker CA72-4. The constructed immunosensor achieved signal amplification by increasing the electrocatalytic activity to H2O2 by means of the synergistic effect of MnO2 ultra-thin nanosheets (MnO2 UNs) and HNM-AuPtPd. At the same time, the electrochemical properties of the immunosensor were analyzed using cyclic voltammetry, electrochemical impedance, amperometry (with the test voltage of -0.4 V), and differential pulse voltammetry. The experimental results showed that the MnO2/HNM-AuPtPd nanocomposites were successfully prepared, and the immunosensor Ab/MnO2/HNM-AuPtPd/GCE demonstrated an excellent electrochemical performance. The electrochemical immunosensor had the highest detection sensitivity under the optimal experimental conditions, such as incubation pH of 7.0, incubation time of 60 min, with the addition of 15 µL of H2O2, and in the concentration range 0.001-500 U/mL. It had a low detection limit of 1.78×10-5 U/mL (S/N = 3). Moreover, the serum sample recovery were in the range from 99.38 to 100.52%. This study provides a new method and experimental basis for the detection of tumor markers in clinical practice.


Assuntos
Antígenos Glicosídicos Associados a Tumores , Técnicas Biossensoriais , Nanocompostos , Biomarcadores Tumorais , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/química , Compostos de Manganês/química , Óxidos/química , Imunoensaio , Nanocompostos/química
2.
Braz Oral Res ; 38: e028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597547

RESUMO

Acidic pH can modify the properties of repair cements. In this study, volumetric change and solubility of the ready-to-use bioceramic repair cement Bio-C Repair (BCR, Angelus, Londrina, PR, Brazil) were evaluated after immersion in phosphate-buffered saline (PBS) (pH 7.0) or butyric acid (pH 4.5). Solubility was determined by the difference in initial and final mass using polyethylene tubes measuring 4 mm high and 6.70 mm in internal diameter that were filled with BCR and immersed in 7.5 mL of PBS or butyric acid for 7 days. The volumetric change was established by using bovine dentin tubes measuring 4 mm long with an internal diameter of 1.5 mm. The dentin tubes were filled with BCR at 37°C for 24 hours. Scanning was performed with micro-computed tomography (micro-CT; SkyScan 1176, Bruker, Kontich, Belgium) with a voxel size of 8.74 µm. Then, the specimens were immersed in 1.5 mL of PBS or butyric acid at and 37 °C for 7 days. After this period, a new micro-CT scan was performed. Bio-C Repair showed greater mass loss after immersion in butyric acid when compared with immersion in PBS (p<0.05). Bio-C Repair showed volumetric loss after immersion in butyric acid and increase in volume after immersion in PBS (p<0.05). The acidic pH influenced the solubility and dimensional stability of the Bio-C Repair bioceramic cement, promoting a higher percentage of solubility and decrease in volumetric values.


Assuntos
Óxidos , Materiais Restauradores do Canal Radicular , Animais , Bovinos , Solubilidade , Óxidos/química , Compostos de Cálcio/química , Microtomografia por Raio-X , Ácido Butírico , Teste de Materiais , Cimentos Dentários/química , Cimentos de Ionômeros de Vidro , Concentração de Íons de Hidrogênio , Silicatos/química , Materiais Restauradores do Canal Radicular/química
3.
PLoS One ; 19(4): e0301075, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564619

RESUMO

In the field of soil mechanics, especially in transportation and environmental geotechnics, the use of machine learning (ML) techniques has emerged as a powerful tool for predicting and understanding the compressive strength behavior of soils especially graded ones. This is to overcome the sophisticated equipment, laboratory space and cost needs utilized in multiple experiments on the treatment of soils for environmental geotechnics systems. This present study explores the application of machine learning (ML) techniques, namely Genetic Programming (GP), Artificial Neural Networks (ANN), Evolutionary Polynomial Regression (EPR), and the Response Surface Methodology in predicting the unconfined compressive strength (UCS) of soil-lime mixtures. This was for purposes of subgrade and landfill liner design and construction. By utilizing input variables such as Gravel, Sand, Silt, Clay, and Lime contents (G, S, M, C, L), the models forecasted the strength values after 7 and 28 days of curing. The accuracy of the developed models was compared, revealing that both ANN and EPR achieved a similar level of accuracy for UCS after 7 days, while the GP model performed slightly lower. The complexity of the formula required for predicting UCS after 28 days resulted in decreased accuracy. The ANN and EPR models achieved accuracies of 85% and 82%, with R2 of 0.947 and 0.923, and average error of 0.15 and 0.18, respectively, while the GP model exhibited a lower accuracy of 66.0%. Conversely, the RSM produced models for the UCS with predicted R2 of more than 98% and 99%, for the 7- and 28- day curing regimes, respectively. The RSM also produced adequate precision in modelling UCS of more than 14% against the standard 7%. All input factors were found to have almost equal importance, except for the lime content (L), which had an average influence. This shows the importance of soil gradation in the design and construction of subgrade and landfill liners. This research further demonstrates the potential of ML techniques for predicting the strength of lime reconstituted G-S-M-C graded soils and provides valuable insights for engineering applications in exact and sustainable subgrade and liner designs, construction and performance monitoring and rehabilitation of the constructed civil engineering infrastructure.


Assuntos
Compostos de Cálcio , Solo , Solo/química , Força Compressiva , Compostos de Cálcio/química , Óxidos/química
4.
J Environ Sci (China) ; 142: 43-56, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38527895

RESUMO

Alkali metal potassium was beneficial to the electronic regulation and structural stability of transition metal oxides. Herein, K ions were introduced into manganese oxides by different methods to improve the degradation efficiency of toluene. The results of activity experiments indicated that KMnO4-HT (HT: Hydrothermal method) exhibited outstanding low-temperature catalytic activity, and 90% conversion of toluene can be achieved at 243°C, which was 41°C and 43°C lower than that of KNO3-HT and Mn-HT, respectively. The largest specific surface area was observed on KMnO4-HT, facilitating the adsorption of toluene. The formation of cryptomelane structure over KMnO4-HT could contribute to higher content of Mn3+ and lattice oxygen (Olatt), excellent low-temperature reducibility, and high oxygen mobility, which could increase the catalytic performance. Furthermore, two distinct degradation pathways were inferred. Pathway Ⅰ (KMnO4-HT): toluene → benzyl → benzoic acid → carbonate → CO2 and H2O; Pathway ⅠⅠ (Mn-HT): toluene → benzyl alcohol → benzoic acid → phenol → maleic anhydride → CO2 and H2O. Fewer intermediates were detected on KMnO4-HT, indicating its stronger oxidation capacity of toluene, which was originated from the doping of K+ and the interaction between KOMn. More intermediates were observed on Mn-HT, which can be attributed to the weaker oxidation ability of pure Mn. The results indicated that the doping of K+ can improve the catalytic oxidation capacity of toluene, resulting in promoted degradation of intermediates during the oxidation of toluene.


Assuntos
Compostos de Manganês , Manganês , Tolueno , Manganês/química , Oxigênio/química , Dióxido de Carbono , Óxidos/química , Oxirredução , Catálise , Ácido Benzoico
5.
J Colloid Interface Sci ; 665: 188-203, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38522159

RESUMO

Anti-tumor therapies reliant on reactive oxygen species (ROS) as primary therapeutic agents face challenges due to a limited oxygen substrate. Photodynamic therapy (PDT) is particularly hindered by inherent hypoxia, while chemodynamic therapy (CDT) encounters obstacles from insufficient endogenous hydrogen peroxide (H2O2) levels. In this study, we engineered biodegradable tumor microenvironment (TME)-activated hollow mesoporous MnO2-based nanotheranostic agents, designated as HAMnO2A. This construct entails loading artemisinin (ART) into the cavity and surface modification with a mussel-inspired polymer ligand, namely hyaluronic acid-linked poly(ethylene glycol)-diethylenetriamine-conjugated (3,4-dihydroxyphenyl) acetic acid, and the photosensitizer Chlorin e6 (mPEG-HA-Dien-(Dhpa/Ce6)), facilitating dual-modal imaging-guided PDT/CDT synergistic therapy. In vitro experimentation revealed that HAMnO2A exhibited ideal physiological stability and enhanced cellular uptake capability via CD44-mediated endocytosis. Additionally, it was demonstrated that accelerated endo-lysosomal escape through the pH-dependent protonation of Dien. Within the acidic and highly glutathione (GSH)-rich TME, the active component of HAMnO2A, MnO2, underwent decomposition, liberating oxygen and releasing both Mn2+ and ART. This process alleviates hypoxia within the tumor region and initiates a Fenton-like reaction through the combination of ART and Mn2+, thereby enhancing the effectiveness of PDT and CDT by generating increased singlet oxygen (1O2) and hydroxyl radicals (•OH). Moreover, the presence of Mn2+ ions enabled the activation of T1-weighted magnetic resonance imaging. In vivo findings further validated that HAMnO2A displayed meaningful tumor-targeting capabilities, prolonged circulation time in the bloodstream, and outstanding efficacy in restraining tumor growth while inducing minimal damage to normal tissues. Hence, this nanoplatform serves as an efficient all-in-one solution by facilitating the integration of multiple functions, ultimately enhancing the effectiveness of tumor theranostics.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Compostos de Manganês/farmacologia , Compostos de Manganês/química , Microambiente Tumoral , Nanomedicina Teranóstica/métodos , Peróxido de Hidrogênio/química , Óxidos/química , Fármacos Fotossensibilizantes/química , Neoplasias/tratamento farmacológico , Oxigênio , Hipóxia/tratamento farmacológico , Linhagem Celular Tumoral , Nanopartículas/química
6.
J Med Chem ; 67(7): 5168-5184, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38549449

RESUMO

Molecules with N-oxide functionalities are omnipresent in nature and play an important role in Medicinal Chemistry. They are synthetic or biosynthetic intermediates, prodrugs, drugs, or polymers for applications in drug development and surface engineering. Typically, the N-oxide group is critical for biomedical applications of these molecules. It may provide water solubility or decrease membrane permeability or immunogenicity. In other cases, the N-oxide has a special redox reactivity which is important for drug targeting and/or cytotoxicity. Many of the underlying mechanisms have only recently been discovered, and the number of applications of N-oxides in the healthcare field is rapidly growing. This Perspective article gives a short summary of the properties of N-oxides and their synthesis. It also provides a discussion of current applications of N-oxides in the biomedical field and explains the basic molecular mechanisms responsible for their biological activity.


Assuntos
Química Farmacêutica , Óxidos , Óxidos/química , Polímeros/química
7.
Environ Sci Technol ; 58(13): 5832-5843, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511412

RESUMO

Photosensitizer-mediated abiotic oxidation of Mn(II) can yield soluble reactive Mn(III) and solid Mn oxides. In eutrophic water systems, the ubiquitous algal extracellular organic matter (EOM) is a potential photosensitizer and may have a substantial impact on the oxidation of Mn(II). Herein, we focused on investigating the photochemical oxidation process from Mn(II) to solid Mn oxide driven by EOM. The results of irradiation experiments demonstrated that the generation of Mn(III) intermediate was crucial for the successful photo oxidization of Mn(II) to solid Mn oxide mediated by EOM. EOM can serve as both a photosensitizer and a ligand, facilitating the formation of the Mn(III)-EOM complex. The complex exhibited excellent efficiency in removing 17α-ethinylestradiol. Furthermore, the complex underwent decomposition as a result of reactions with reactive intermediates, forming a solid Mn oxide. The presence of nitrate can enhance the photochemical oxidation process, facilitating the conversion of Mn(II) to Mn(III) and then to solid Mn oxide. This study deepens our grasp of Mn(II) geochemical processes in eutrophic water and its impact on organic micropollutant fate.


Assuntos
Etinilestradiol , Óxidos , Óxidos/química , Fármacos Fotossensibilizantes , Compostos de Manganês/química , Oxirredução , Água/química
8.
Environ Sci Technol ; 58(13): 5963-5973, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38512311

RESUMO

In this study, characteristics of oxidation debris (OD) and its stripping mechanism from graphene oxide (GO) were explored. The results demonstrated that OD contains three components, namely, protein-, fulvic acid-, and humic acid-like substances; among these, protein-like substances with lower molecular weight and higher hydrophilicity were most liable to be stripped from GO and were the primary components stripped from GO at pH < 10, whereas humic acid- and fulvic acid-like substances were stripped from GO at pH > 10. During the stripping of OD, hydrogen bonds from carboxyl and carbonyl were the first to break, followed by hydrogen bonds from epoxy. Subsequently, π-π interactions were broken, and hydrogen bond interactions induced by hydroxyl groups were the hardest to break. After the stripping of OD, the recombination of OD on GO was observed, and regions containing relatively fewer oxygen-containing functional groups were favorable binding sites for the readsorbed OD. The stripping and recombination of OD on GO resulted in an uneven GO surface, which should be considered during the development of GO-based environmental materials and the evaluation of their environmental behavior.


Assuntos
Grafite , Nanoestruturas , Óxidos/química , Substâncias Húmicas/análise , Grafite/química
9.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540784

RESUMO

A hybrid material, consisting of commercially available nitrocellulose (NC) membrane non-covalently modified with amino-polyethylene glycol functionalized reduced graphene oxide (NH2-PEG-rGO) nanoparticles, was successfully synthesized for oligonucleotide extraction. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the modification of the NC membrane, revealing characteristic peaks of both compounds, i.e., NC and NH2-PEG-rGO. Scanning Electron Microscopy (SEM) exhibited morphological changes in the NC/NH2-PEG-rGO hybrid membrane, marked by the introduction of NH2-PEG-rGO particles, resulting in a distinctly smothered surface compared to the porous surface of the NC control membrane. Wettability assays revealed hydrophobic behavior for the NC/NH2-PEG-rGO hybrid membrane, with a water contact angle exceeding 90°, contrasting with the hydrophilic behavior characterized by a 16.7° contact angle in the NC membrane. The performance of the NC/NH2-PEG-rGO hybrid membrane was evaluated for the extraction of ssDNA with fewer than 50 nucleotides from solutions containing various ionic species (MnCl2, MgCl2, and MnCl2/MgCl2). The NC/NH2-PEG-rGO hybrid membrane exhibited optimal performance when incubated in MgCl2, presenting the highest fluorescence emission at 525 relative fluorescence units (r.f.u.). This corresponds to the extraction of approximately 610 pg (≈13%) of the total oligo-DNA, underscoring the efficacy of the pristine material, which extracts 286 pg (≈6%) of oligo-DNA in complex solutions.


Assuntos
Grafite , Óxidos , Óxidos/química , Colódio , Grafite/química , Água , DNA de Cadeia Simples , Extração em Fase Sólida
10.
J Clin Pediatr Dent ; 48(2): 93-101, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38548638

RESUMO

When dental pulp is exposed, it must be covered with a biocompatible material to form reparative dentine. The material used, besides being biocompatible, should have an ideal surface structure for the attachment, proliferation and differentiation of dental pulp stem cells. This study aimed to evaluate the porosity of the microstructures of four pulp capping materials using micro-computed tomography (micro-CT). Biodentine, Bioaggregate, TheraCal and Dycal materials were prepared according to the manufacturer's instructions using 2 × 9 mm Teflon molds. A total of 60 samples, 15 in each group, were scanned using micro-CT. Open and closed pores and the total porosity of the microstructures of the materials were assessed. The findings obtained from the study were analyzed via the Kruskal-Wallis test followed by the Mann-Whitney U test. The porosity of Bioaggregate was significantly higher than that of Biodentine, Dycal and TheraCal in all porosity values. While Biodentine did not show a statistically significant difference in open and total porosity values from either TheraCal or Dycal, closed porosity values of Dycal were significantly higher than those of Biodentine and TheraCal. Because of the affinity of cells to porous surfaces, the pulp capping materials' microstructure may affect the pulp capping treatment's success. From this perspective, the use of Bioaggregate in direct pulp capping may increase the success of treatment.


Assuntos
Hidróxido de Cálcio , Capeamento da Polpa Dentária , Hidroxiapatitas , Minerais , Agentes de Capeamento da Polpa Dentária e Pulpectomia , Humanos , Capeamento da Polpa Dentária/métodos , Microtomografia por Raio-X , Porosidade , Óxidos/química , Agentes de Capeamento da Polpa Dentária e Pulpectomia/uso terapêutico , Silicatos/química , Compostos de Cálcio/química , Combinação de Medicamentos , Compostos de Alumínio/química
11.
Environ Sci Technol ; 58(14): 6391-6401, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551030

RESUMO

Chromium (Cr) leached from iron (Fe) (oxyhydr)oxide-rich tropical laterites can substantially impact downstream groundwater, ecosystems, and human health. However, its partitioning into mineral hosts, its binding, oxidation state, and potential release are poorly defined. This is in part due to the current lack of well-designed and validated Cr-specific sequential extraction procedures (SEPs) for laterites. To fill this gap, we have (i) first optimized a Cr SEP for Fe (oxyhydr)oxide-rich laterites using synthetic and natural Cr-bearing minerals and laterite references, (ii) used a complementary suite of techniques and critically evaluated existing non-laterite and non-Cr-optimized SEPs, compared to our optimized SEP, and (iii) confirmed the efficiency of our new SEP through analyses of laterites from the Philippines. Our results show that other SEPs inadequately leach Cr host phases and underestimate the Cr fractions. Our SEP recovered up to seven times higher Cr contents because it (a) more efficiently dissolves metal-substituted Fe phases, (b) quantitatively extracts adsorbed Cr, and (c) prevents overestimation of organic Cr in laterites. With this new SEP, we can estimate the mineral-specific Cr fractionation in Fe-rich tropical soils more quantitatively and thus improve our knowledge of the potential environmental impacts of Cr from lateritic areas.


Assuntos
Cromo , Ferro , Humanos , Cromo/química , Ecossistema , Minerais , Oxirredução , Óxidos/química
12.
Environ Geochem Health ; 46(4): 139, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483690

RESUMO

Dye wastewater possess immense toxicity with carcinogenic properties and they persist in environment owing to their stability and resistance to chemical and photochemical changes. The bio degradability of dye-contaminated wastewater is low due to its complex molecular structure. Nano-photocatalysts based on zinc oxide are reported as one of the effective metal oxides for dye remediation due to their photostability, enhanced UV and visible absorption capabilities in an affordable manner. An electron-hole pair forms when electrons in the valence band of ZnO nano-photocatalyst transfer into the conduction band by absorbing UV light. The review article presents a detailed review on ZnO applications for treating acidic and basic dyes along with the dye degradation performance based on operating conditions and photocatalytic kinetic models. Several acidic and basic dyes have been shown to degrade efficiently using ZnO and its nanocomposites. Higher removal percentages for crystal violet was reported at pH 12 by ZnO/Graphene oxide catalyst under 400 nm UV light, whereas acidic dye Rhodamine B at a pH of 5.8 was degraded to 100% by pristine ZnO. The mechanism of action of ZnO nanocatalysts in degrading the dye contamination are reported and the research gaps to make these agents in environmental remediation on real time operations are discussed.


Assuntos
Nanocompostos , Óxido de Zinco , Corantes/química , Águas Residuárias , Óxidos/química , Nanocompostos/química , Catálise
13.
Sci Rep ; 14(1): 6081, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480834

RESUMO

Due to their high specific surface area and its characteristic's functionalized nanomaterials have great potential in medical applications specialty, as an anticancer. Herein, functional nanoparticles (NPs) based on iron oxide Fe2O3, iron oxide modified with copper oxide Fe2O3@CuO, and tungsten oxide WO3 were facile synthesized for biomedical applications. The obtained nanomaterials have nanocrystal sizes of 35.5 nm for Fe2O3, 7 nm for Fe2O3@CuO, and 25.5 nm for WO3. In addition to octahedral and square nanoplates for Fe2O3, and WO3; respectively. Results revealed that Fe2O3, Fe2O3@CuO, and WO3 NPs showed remarked anticancer effects versus a safe effect on normal cells through cytotoxicity test using MTT-assay. Notably, synthesized NPs e.g. our result demonstrated that Fe2O3@CuO exhibited the lowest IC50 value on the MCF-7 cancer cell line at about 8.876 µg/ml, compared to Fe2O3 was 12.87 µg/ml and WO3 was 9.211 µg/ml which indicate that the modification NPs Fe2O3@CuO gave the highest antiproliferative effect against breast cancer. However, these NPs showed a safe mode toward the Vero normal cell line, where IC50 were monitored as 40.24 µg/ml for Fe2O3, 21.13 µg/ml for Fe2O3@CuO, and 25.41 µg/ml for WO3 NPs. For further evidence. The antiviral activity using virucidal and viral adsorption mechanisms gave practiced effect by viral adsorption mechanism and prevented the virus from replicating inside the cells. Fe2O3@CuO and WO3 NPs showed a complete reduction in the viral load synergistic effect of combinations between the tested two materials copper oxide instead of iron oxide alone. Interestingly, the antimicrobial efficiency of Fe2O3@CuO NPs, Fe2O3NPs, and WO3NPs was evaluated using E. coli, S. aureus, and C. albicans pathogens. The widest microbial inhibition zone (ca. 38.45 mm) was observed with 250 mg/ml of WO3 NPs against E. coli, whereas using 40 mg/ml of Fe2O3@CuO NPS could form microbial inhibition zone ca. 32.86 mm against S. aureus. Nevertheless, C. albicans was relatively resistant to all examined NPs. The superior biomedical activities of these nanostructures might be due to their unique features and accepted evaluations.


Assuntos
Compostos Férricos , Nanopartículas Metálicas , Nanopartículas , Cobre/química , Staphylococcus aureus , Escherichia coli , Nanopartículas/química , Óxidos/farmacologia , Óxidos/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia
14.
ACS Appl Mater Interfaces ; 16(11): 13543-13562, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452225

RESUMO

We use low-molecular-weight branched polyethylenimine (PEI) to produce cytocompatible reduced graphene oxide quantum dots (rGOQD) as a photothermal agent and covalently bind it with the photosensitizer IR-820. The rGOQD/IR820 shows high photothermal conversion efficiency and produces reactive oxygen species (ROS) after irradiation with near-infrared (NIR) light for photothermal/photodynamic therapy (PTT/PDT). To improve suspension stability, rGOQD/IR820 was PEGylated by anchoring with the DSPE hydrophobic tails in DSPE-PEG-Mal, leaving the maleimide (Mal) end group for covalent binding with manganese dioxide/bovine serum albumin (MnO2/BSA) and targeting ligand cell-penetrating peptide (CPP) to synthesize rGOQD/IR820/MnO2/CPP. As MnO2 can react with intracellular hydrogen peroxide to produce oxygen for alleviating the hypoxia condition in the acidic tumor microenvironment, the efficacy of PDT could be enhanced by generating more cytotoxic ROS with NIR light. Furthermore, quercetin (Q) was loaded to rGOQD through π-π interaction, which can be released in the endosomes and act as an inhibitor of heat shock protein 70 (HSP70). This sensitizes tumor cells to thermal stress and increases the efficacy of mild-temperature PTT with NIR irradiation. By simultaneously incorporating the HSP70 inhibitor (Q) and the in situ hypoxia alleviating agent (MnO2), the rGOQD/IR820/MnO2/Q/CPP can overcome the limitation of PTT/PDT and enhance the efficacy of targeted phototherapy in vitro. From in vivo study with an orthotopic brain tumor model, rGOQD/IR820/MnO2/Q/CPP administered through tail vein injection can cross the blood-brain barrier and accumulate in the intracranial tumor, after which NIR laser light irradiation can shrink the tumor and prolong the survival times of animals by simultaneously enhancing the efficacy of PTT/PDT to treat glioblastoma.


Assuntos
Antineoplásicos , Glioblastoma , Grafite , Fotoquimioterapia , Pontos Quânticos , Animais , Compostos de Manganês/farmacologia , Compostos de Manganês/química , Glioblastoma/tratamento farmacológico , Pontos Quânticos/uso terapêutico , Proteínas de Choque Térmico , Espécies Reativas de Oxigênio , Hipóxia Tumoral , Óxidos/farmacologia , Óxidos/química , Fototerapia , Hipóxia , Linhagem Celular Tumoral , Microambiente Tumoral
15.
ACS Sens ; 9(3): 1410-1418, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38456391

RESUMO

Dimethyl disulfide (DMDS) is a common odor pollutant with an extremely low olfactory threshold. Highly sensitive and selective detection of DMDS in ambient humid air background, by metal oxide semiconductor (MOS) sensors, is highly desirable to address the increased public concern for health risk. However, it has still been a critical challenge up to now. Herein, p-type delafossite CuGaO2 has been proposed as a promising DMDS sensing material owing to its striking hydrophobicity (revealed by water contact angle measurement) and excellent partial catalytic oxidation properties (indicated by mass spectroscopy). The present CuGaO2 sensor shows a selective DMDS response, with satisfied humidity resistance performance and long-term stability at a relatively low operation temperature of 140 °C. An ultrahigh response of 100 to 10 ppm DMDS and a low limit of detection of 3.3 ppb could be achieved via a pulsed temperature modulation strategy. A smart sensing system based on a CuGaO2 sensor has been developed, which could precisely monitor DMDS vapor in ambient humid air, even with the presence of multiple interfering gases, demonstrating the practical application capability of MOS sensors for environmental odor monitoring.


Assuntos
Dissulfetos , Gases , Óxidos/química , Temperatura
16.
BMC Oral Health ; 24(1): 335, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486235

RESUMO

BACKGROUND: Several efforts have been made to improve mechanical and biological properties of calcium silicate-based cements through changes in chemical composition of the materials. This study aimed to investigate the physical (including setting time and compressive strength) and chemical (including calcium ion release, pH level) properties as well as changes in cytotoxicity of mineral trioxide aggregate (MTA) after the addition of 3 substances including CaCl2, Na2HPO4, and propylene glycol (PG). METHODS: The systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Electronic searches were performed on PubMed, Embase, and Scopus databases, spanning from 1993 to October 2023 in addition to manual searches. Relevant laboratory studies were included. The quality of the included studies was assessed using modified ARRIVE criteria. Meta-analyses were performed by RevMan statistical software. RESULTS: From the total of 267 studies, 24 articles were included in this review. The results of the meta-analysis indicated that addition of PG increased final setting time and Ca2+ ion release. Addition of Na2HPO4 did not change pH and cytotoxicity but reduced the final setting time. Incorporation of 5% CaCl2 reduced the setting time but did not alter the cytotoxicity of the cement. However, addition of 10% CaCl2 reduced cell viability, setting time, and compressive strength. CONCLUSION: Inclusion of 2.5% wt. Na2HPO4 and 5% CaCl2 in MTA can be advisable for enhancing the physical, chemical, and cytotoxic characteristics of the admixture. Conversely, caution is advised against incorporating elevated concentrations of PG due to its retarding effect. TRIAL REGISTRATION: PROSPERO registration number: CRD42021253707.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Óxidos , Silicatos , Compostos de Alumínio/toxicidade , Compostos de Alumínio/química , Cloreto de Cálcio/farmacologia , Cimentos Dentários/toxicidade , Cimentos Dentários/química , Combinação de Medicamentos , Óxidos/toxicidade , Óxidos/química , Propilenoglicol/química
17.
Chemosphere ; 353: 141647, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460843

RESUMO

Humification offers a promising avenue for sequestering dissolved organic carbon while facilitating environmental cleanup. In this study, CuMgFe layered double oxides (LDO) were applied as a catalyst to replace conventional enzymes, such as laccase, thereby enhancing the in vitro polyphenol-Maillard humification reaction. CuMgFe LDO was synthesized through calcination of CuMgFe layered double hydroxides (LDH) at 500 °C for 5 h. A suite of characterization methods confirmed the successful formation into mixed oxides (Cu2O, CuO, MgO, FeO, and Fe2O3) after thermal treatment. A rapid humification reaction was observed with CuMgFe LDO, occurring within a two-week span, likely due to a distinct synergy between copper and iron elements. Subsequent analyses identified that MgO in CuMgFe LDO also played a pivotal role in humification by stabilizing the pH of the reaction. In the absence of magnesium, LDO's humification activity was more pronounced in the early stages of the reaction, but it rapidly diminished as the reaction progressed. The efficiency of CuMgFe LDO was heightened at elevated temperatures (35 °C), while light conditions manifested a discernible effect, with a modest decrease in humification efficacy under indoor light exposure. CuMgFe LDO surpassed both laccase and MgFe LDH in performance, boasting a superior humification efficiency relative to its precursor, CuMgFe LDH. The catalysts' humification activity was modulated by their crystallinity and valence dynamics. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results suggested that introducing the amino acid, glycine, expedited the CuMgFe LDO-fueled humification, enhancing the formation of C-N and C-C bonds in the resultant products. The humic-like substances derived from the catalyst-enhanced reaction displayed an elevated presence of aromatic configurations and a richer array of oxygen functional groups in comparison to a typical commercial humic material.


Assuntos
Lacase , Óxidos , Óxidos/química , Óxido de Magnésio , Substâncias Húmicas/análise , Hidróxidos/química
18.
Environ Pollut ; 348: 123884, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38548155

RESUMO

The most recent structural study of graphene oxide (GO) indicates that the oxidized debris (ODs) adhered to as-prepared GO will strip in certain aquatic settings. The impact of ODs stripping on the characteristics of GO has been widely reported, but its effects on GO aggregation have received less attention. Here, the influence of OD stripping on the GO aggregation property was identified, and the aggregation of as-prepared GO and GO upon OD stripping was compared. Upon ODs stripping, the pKa values of GO shifted from 3.91, 6.25, and 9.84 to 4.54, 6.65, and 10.21, respectively. Further analysis indicated the removal of ODs reduced the net negative charge and improved the hydrophobicity of GO, hence promoting the aggregation of GO. The acceleration of GO-Ca2+-OD aggregate formation was facilitated by the collective effects of ODs stripping, functional group deprotonation, double layer compression, OD bridging, and charge neutralization. The metal ions and stripped ODs attach to GO edges and link GO, which perform like bridges and contribute to further aggregation. In general, the existence of ODs adds complexity to the constructions and characteristics of GO, and it is important to take this into account while evaluating the aggregation characteristic of GO-based materials.


Assuntos
Grafite , Simulação de Dinâmica Molecular , Óxidos/química , Água/química , Grafite/química
19.
Environ Sci Pollut Res Int ; 31(17): 25373-25387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472583

RESUMO

Mn3O4/ZnO-Al2O3-CeO2 catalyst was synthesized through a solid-state process from a 3% Mn-doped Zn-(Al/Ce) layered double hydroxide structure. Detailed structural and optical characterization using XRD, FTIR, UV-visible DRS, and TEM was conducted. By investigating clofibric acid (CA) degradation in aqueous solution, Mn3O4/ZnO-Al2O3-CeO2 photocatalytic activity was evaluated. The results show that the heterostructure mixed oxide catalyst has excellent CA photodegradation performance. Further, the characterization reveals that such photocatalytic efficiency can be attributed to two facts that are summarized in the optical properties and the synergic effect between Mn and Ce elements. The sample demonstrated a narrow band gap of 2.34 eV based on DRS. According to the experimental results of the photodegradation, after 120 min of irradiation, the photocatalyst exhibited the highest photocatalytic activity, with a degradation efficiency of 93.6%. Optimization outcomes indicated that maximum degradation efficiency was attained under the following optimum conditions: catalyst dose of 0.3 g/L, initial dye concentration of 20 mg/L, pH 3.86, and 120 min of reaction time. The quenching test demonstrates that photogenerated electrons and superoxide radicals are the most powerful reactive species. The catalyst could be useful in decreasing the photogenerated charges recombination, which offers more redox cycles simultaneously during the catalytic process. The strong Ce-Mn interaction and the formation of their different oxidation states offer a high degradation efficiency by facilitating electron-hole transfer. The introduction of Mn3O4 in the catalyst can effectively improve the visible absorption properties, which are beneficial in the photocatalytic process by reaching a high catalytic efficiency at a low cost.


Assuntos
Óxidos , Óxido de Zinco , Óxidos/química , Água , Óxido de Zinco/química , Fotólise , Luz , Zinco
20.
J Hazard Mater ; 469: 133921, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452670

RESUMO

Increasing evidence indicates that metal oxides can improve the methanogenic performance during anaerobic digestion (AD) of piggery wastewater. However, the impacts of composite metal oxides on the methanogenic performance and risk of antibiotic resistance gene (ARG) transmission during AD are not fully understood. In this study, different concentrations of Fe-Mn binary oxides (FMBO at 0, 250, 500, and 1000 mg/L) were added to AD to explore the effects of FMBO on the process. The methane yield was 7825.1 mL under FMBO at 250 mg/L, 35.2% higher than that with FMBO at 0 mg/L. PICRUSt2 functional predictions showed that FMBO promoted the oxidation of acetate and propionate, and the production of methane from the substrate, as well as increasing the abundances of most methanogens and genes encoding related enzymes. Furthermore, under FMBO at 250 mg/L, the relative abundances of 14 ARGs (excluding tetC and sul2) and four mobile gene elements (MGEs) decreased by 24.7% and 55.8%, respectively. Most of the changes in the abundances of ARGs were explained by microorganisms, especially Bacteroidetes (51.20%), followed by MGEs (11.98%). Thus, the methanogenic performance of AD improved and the risk of horizontal ARG transfer decreased with FMBO, especially at 250 mg/L.


Assuntos
Antibacterianos , Óxidos , Óxidos/química , Anaerobiose , Resistência Microbiana a Medicamentos/genética , Metano , Genes Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...